RESEARCH ARTICLE

Large scale evaluation, genetic variability and correlation analysis in rice accessions

Indrajeet, S. Kar, R.R. Kanwar, D.P. Singh

Department of Genetics and Plant Breeding, S.G. College of Agriculture and Research Station, Kumhrawand, Jagdalpur, Bastar 494 001 Chhattisgarh India

Corresponding authors email: indrajectsahu8446@gmail.com

Manuscript received: June 1, 2024; Decision on manuscript, July 2, 2024; Manuscript accepted: July 15, 2024

Abstract

The present study was focused and conducted to evaluate the genetic variability and relationship among 17 yield and yield-related traits in 104 rice genotypes, including 4 standard check varieties, at S.G. College of Agriculture and Research Station, Jagdalpur, Chhattisgarh. The analysis of genetic variability revealed that grain yield per plant exhibited the highest genotypic and phenotypic coefficients of variation. The traits, test weight and grain yield per plant showed the highest heritability and genetic advance as a percentage of the mean, respectively. Correlation analysis indicated that grain yield per plant had a highly significant positive association with test weight, biological yield per plant, number of filled grains per panicle, number of effective tillers per plant, plant height, kernel breadth, panicle length and grain breadth, while it had a significant negatively associated with days to 50% flowering. These yield-related traits could be targeted for selection to enhance the genetic potential for rice yield improvement.

Keywords: Rice, genetic variability, correlation analysis, GCV, PCV

Introduction

Rice is the world's most crucial grain crop, having become the primary food source for humans due to its global distribution. India is the 2nd biggest producer and consumer of rice globally. In India, rice cultivation spans 47.83 million hectares, achieving a record production of 135.75 million tonnes and an estimated productivity of 2,838 kg per hectare for the 2022-23 period. In various rice-growing regions of India, farmers are cultivating unique landraces that possess special traits like high yield and disease resistance. These landraces hold significant value both commercially and for breeding programs. Many of these germplasms are yet to be fully developed to realize their potential for enhancing rice germplasm and they can be found in many regions of the country. Rice landraces may possess valuable alleles that are rare in modern germplasm (Pervaiz et al., 2010). Genetic variation within plant material is fundamental to crop improvement (Iqbal et al., 2014).

The success of any crop improvement program depends on the availability of this variability and its effective use in breeding efforts. Assessing variability is crucial for identifying traits with higher heritability and potential for genetic improvement. Analyzing character associations is essential to identify positively correlated traits that can contribute to overall grain yield enhancement.

Materials and methods

A total of 100 rice landraces and 4 check varieties - Bastar Dhan 1, Samleshwari, Danteshwari and CG 1919 were utilized in this study. These genotypes were evaluated using an augmented complete block design with 5 blocks at the Research cum Instructional Farm of S.G. College of Agriculture and Research Station, Jagdalpur (C.G.). Each block consisted of 20 test genotypes and 4 check genotypes. The genotypes were planted in 2 rows, each row 3 meters long, with a spacing of 20 cm x 15 cm. Standard cultural practices and management techniques were followed to grow the crop. 6 qualitative and 17 quantitative traits were recorded, including basal leaf sheath color, auricle color, ligule shape, node color, flag leaf attitude, kernel color, days to 50% flowering, plant height (cm), flag leaf length (cm), flag leaf width (cm), number of effective tillers per plant, number of filled grains per panicle, panicle length (cm), grain length (mm), grain breadth (mm), kernel length (mm), kernel breadth (mm), grain L/B ratio, kernel L/B ratio, test weight (g), biological yield per plant (g), grain yield per plant (g) and harvest index (%). Analysis of (ANOVA) was performed variance genotypic and phenotypic coefficients of variation, heritability (broad sense) and genetic advance as a percentage of the mean were calculated following the procedures of Burton and Devane (1953). Correlations among the 17 quantitative characters were assessed according to the method of Johnson *et al.*, 1995.

Result and discussion

The variance analysis of 17 quantitative traits revealed significant differences across the 104 genotypes, indicating variation in all the characters examined (Table 1). From the table 2 it is being learnt that the PCV values were slightly higher than GCV values, suggested that environmental factors influence the characters expression. PCV values ranged from 1.34% (flag leaf length) to 12.67% (grain yield per plant). None characters identified high GCV and PCV. Grain yield per plant and the number of filled grains per panicle showed moderate PCV and GCV values ranging from 10 to 20%. Heritability ranged from 11.95% (flag leaf length) to 98.93% (test weight). All characters exhibited high heritability except for flag leaf length, panicle length and kernel L/B ratio. Grain yield per plant and number of filled grains per panicle showed high genetic advance as a percentage of the mean, with values of 24.92% and 20.39%, respectively. Low genetic advance as a percentage of the mean was observed for flag leaf width (8.99%), grain breadth (8.58%), plant height (7.93%), kernel breadth (7.33%), panicle length (3.07%) and flag leaf length (2.55%).

High heritability combined with high genetic advance was observed for traits such as grain yield per plant and number of filled grains per panicle, similar findings of Akshay *et al.*, (2022).

Journal of Genetics, Genomics & Plant Breeding 7(3) 83-91 (July, 2024)

ISSN (Online): 2581-3293

Table 1: mean sum of square

	Source of variation								
	Block	Treatment	Checks	Test entries	Check Vs Test	Error	Total		
DF	4	103	3	99	1	12	119		
Days to 50% flowering	2505.56**	105.37**	610.18**	191.81**	9965.75**	0.89	175.52		
Plant height (cm)	595.11**	92.29**	414.70**	99.05**	-1543.79**	1.75	100.07		
Flag leaf length (cm)	48.64**	12.62**	16.80**	13.90**	-126.92**	7.52	13.31		
Flag leaf width (cm)	0.043**	0.028**	0.057**	0.027**	0.070**	0.001	0.026		
No. of effective tillers/ plant	4.91**	1.55**	1.78**	1.69**	-12.84**	0.13	1.52		
Panicle length (cm)	26.04**	3.27**	8.00**	3.97**	-80.32**	1.19	3.82		
Number of filled grains per panicle	2718.35**	531.33**	919.16**	479.58**	4491.21**	3.30	551.59		
Grain length (mm)	0.338**	0.781**	4.217**	0.690**	-0.543**	0.003	0.687		
Grain breadth(mm)	0.163**	0.076**	0.009**	0.080**	-0.170**	0.002	0.071		
Kernel length (mm)	0.432**	0.499**	3.271**	0.434**	-1.393**	0.001	0.447		
Kernel breadth (mm)	0.172**	0.055**	0.159**	0.059**	-0.651**	0.005	0.054		
Grain L/B ratio	0.234**	0.215**	0.734**	0.210**	0.210**	-0.831**	0.004		
Kernel L/B ratio	0.249**	0.219**	1.400**	0.195**	-0.873**	0.030	0.201		
Test weight (g)	14.238**	13.692**	3.625**	14.466**	-32.773**	0.030	12.333		
Biological yield/ plant	231.039**	48.969**	49.434**	49.799**	-34.610**	2.567	50.410		
Harvest index (%)	104.58**	34.34**	10.22**	29.57**	579.35**	1.29	33.37		
Grain yield/ plant (g)	116.69**	27.76**	15.62**	24.91**	345.87**	0.26	27.97		

Table 3: Genetic variability parameters of rice genotypes

Character	Heritability (%)	GA	GA % of mean	GCV (%)	PCV (%)
Days to 50% flowering	95.91	9.22	10.54	5.23	5.34
Plant height (cm)	91.17	8.37	7.93	4.03	4.22
Flag leaf length (cm)	11.95	0.72	2.55	3.58	1.34
Flag leaf width (cm)	82.71	0.14	8.99	4.80	5.28
Number of effective tillers /plant	68.07	0.91	11.37	6.69	8.11
Panicle length (cm)	25.79	0.67	3.07	2.94	5.79
Number of filled grains / panicle	96.97	20.85	20.39	10.05	10.21
Grain length (mm)	98.26	0.81	10.20	5.0	5.04
Grain breadth (mm)	86.69	0.23	8.58	4.47	4.81
Kernel length (mm)	98.68	0.65	10.81	5.28	5.32
Kernel breadth (mm)	64.89	0.17	7.33	4.42	5.49
Grain L/B ratio	90.49	0.40	13.64	6.96	7.32
Kernel L/B ratio	55.58	0.30	11.18	7.28	9.76
Test weight (g)	98.93	3.39	15.47	7.55	7.59
Biological yield/ plant (g)	78.33	5.55	10.24	5.61	6.34
Harvest index	83.72	4.85	14.07	7.47	8.16
Grain yield / plant (g)	95.47	4.72	24.92	12.38	12.67

This combination of high heritability and high genetic advance as a percentage of the mean suggested the influence of additive gene effects, indicated that simple selection procedures could effectively enhance these traits (Akshay *et al.*, 2022). Similarly, high heritability along with moderate genetic advance was reported for traits like test weight, harvest index, grain L/B ratio, number of effective tillers per plant, kernel length, days to 50% flowering and biological yield per plant. Saha *et al.*, (2019) for days to

50% flowering; Panwar and Mathur, (2007) for test weight and days to 50% flowering. On the other hand, high heritability coupled with low genetic advance was recorded for traits such as flag leaf width, grain breadth, plant height and kernel breadth. While test weight exhibited high heritability, panicle length showed low genetic advance, indicating the involvement of both additive and non-additive gene actions, which makes simple selection less effective for these traits.

ISSN (Online): 2581-3293

Table 3: Correlation analysis of rice genotypes for yield and yield attributing traits

Grain yield / plant (g) 0.404** 0.352** -0.089 0.924** 0.308** **688.0 0.885** 0.493** 0.564** -0.104 0.224* -0.1180.177 1.000 770.0 0.297** -0.041 0.441** 0.316** 0.298** 0.648** Harrest index (%) 0.614** -0.109 0.194* -0.058 1.000 0.031 0.143 Biological yield/plant (g) -0.446** 0.549** 0.470** 0.351** 0.435** 0.598** 0.449** 0.413** -0.173 0.127 0.195* 0.230* 000 **909.0 0.515** 0.490** 0.595** 0.297** 0.461** -0.056 1.000 Test weight (g) 0.093 -0.091 0.105 Kernel length (mm) -0.192 0.106 -0.071 0.700 0.512 0.676 1.000 0.731 0.851 -0.076 -0.123 -0.189 -0.177 Grain L/B ratio 0.163 0.043 -0.027 0.690 0.719 0.557 0.689 1.000 0.344** 0.318** Kemel Breadth (mm) 0.214* -0.002 -0.123 0.060 0.079 0.040 1.000 -0.090 Kernel length (mm) -0.043 0.241 0.208 0.142 0.139 0.046 000 0.881 0.330** 0.334** Grain breadth (mm) 0.150 -0.011 0.053 -0.095 0.099 1.000 -0.058 -0.123 Grain length (mm) 0.063 -0.117 1.000 Number of filled grains /panicle 0.432** 0.269** -0.249* 0.246* 0.009 860.0 1.000 0.399** 0.489** -0.218* Panicle length (cm) 0.179 1.000 0.157 Number of effective tillers p/ plant -0.200* 0.224* -0.160 90000 -0.086 0.069 0.232 Flag leaf width (cm) Flag leaf length (cm) -0.220* 0.217* (g)
*, ** significant at 5% and 1% level, respectively 000 Plant height (cm) 1.000 0.521 Days to 50% flow ering 1.00 Flag lenf length (cm) Flag leaf width (cm) Number of effective Kernel length (mm) Kernel length (mm) Panicle length (cm) Grain length (mm) Grain yield/plant Plant height (cm) Number of filled Kernel Breadth (mm) (g) Biological yield / grains/panicle Grain L/B ratio Grain Breadth Harvest index Days to 50% flowering tillers/plant Test weight Characters plant(g) (mm)

These findings are consistent with previous studies by Khaire *et al.*, (2017), Kunkerkar *et al.*, (2017), Ketan and Sarkar (2014) and Jamal *et al.*, (2009). High heritability paired with low genetic advance suggests non-additive gene action in the inheritance of these traits, as noted by Nirmaladevi *et al.*, (2015). Panicle length and flag leaf length exhibited low heritability and low genetic advance, which is consistent with results reported by Ali *et al.*, 2018 and Pradeep *et al.*, 2018 for the number of filled grains per panicle.

Correlation coefficient analysis is crucial for determining the degree and strength of the association between two variables (Table 3). Grain yield per plant showed a strong positive correlation with characteristics like harvest index, biological yield per plant, number of filled grains per panicle and number of effective tillers per plant. As reported by Panigrahi et al., 2018 for number of effective tillers per plant and panicle length, test weight, plant height, kernel breadth, panicle length and grain breadth. significant correlation Positive was recorded by kernel length, as finding by Aristya et al., (2021), Manasa et al., (2022), Aishwarya et al., (2023) and Singh et al., (2018). Conversely, a highly negative significant correlation was found with days to 50% flowering, while a negative nonsignificant correlation was observed with grain L/B ratio, flag leaf width and kernel L/B ratio.

Days to 50% flowering exhibited a positive significant correlation with flag leaf width, while showing a strong negative significant correlation with plant height, biological yield per plant, harvest index, test weight, kernel breadth, panicle length and grain yield per plant. Number of effective tillers per plant demonstrated a

highly positive significant correlation with grain vield per plant, harvest index and biological vield per plant, while showing a negative significant correlation with days to 50% flowering. These findings are consistent with the results reported by Abhilash et al., 2018 and Segeena et al., 2019 for grain yield per plant. Number of filled grains per panicle exhibited a highly positive significant correlation with the harvest index, followed by grain yield per plant, biological yield per plant and panicle length. Flag leaf width was strongly negatively associated with grain yield per plant and there was a negative correlation between grain yield and days to 50% flowering. These findings are in accordance with Panigrahi et al., 2018, who reported similar correlations for panicle length, grain yield per plant and a negative correlation with test weight.

Grain breadth showed a highly significant positive correlation with kernel breadth, test weight, biological yield per plant, plant height and grain yield per plant. It also exhibited a highly significant negative correlation with grain L/B ratio, kernel L/B ratio and days to 50% flowering, consistent with the findings of Jebakani et al., (2023). Kernel breadth was strongly positively correlated with several plant characteristics, including grain breadth, test weight, biological yield, grain yield, plant height and harvest index. However, it was strongly negatively correlated with grain and kernel L/B ratios, as well as the days to 50% flowering. The kernels L/B ratio was strongly positively correlated with the L/B ratio of grains, as well as with kernel length and grain length. However, it was strongly negatively correlated with kernel breadth and grain breadth. According to Parte et al., 2022, these findings were specifically observed for grain L/B ratio.

Test weight was analyzed strongly positively correlated with several characters, including grain breadth, biological yield per plant, kernel breadth, grain yield per plant, grain length, kernel length, plant height and harvest index. But it was negatively associated with days to 50% flowering.

Hence, it is being suggested that selection for traits like harvest index, biological yield per plant, number of filled grains per panicle, plant height, number of effective tillers per plant, test weight, panicle length, grain breadth and kernel breadth could positively impact rice yield. These traits are interconnected and when improved together, can enhance overall grain yield production. This study revealed that rice landraces exhibit significant genetic diversity. All 104 rice germplasms displayed a wide range of variation in both quantitative and qualitative traits. Selection of grain yield per plant and number of filled grains per panicle which had high heritability combined with high genetic

References

- Abhilash, R., Thirumurugan, T., Sassikumar, D. and Chitra, S. 2018. Genetic studies in F₂ for biometrical traits in Rice (*Oryza sativa* L.). Electronic J. Plant Breed., 9(3): 1067-1076.
- Aishwarya, S.V., Shoba, D., Kumari, S.M.P., Pushpam, A.K. and Arumugam, P. 2023. Genetic association studies in rice landraces. The Pharma Innov. J., 12(9): 703-709.
- 3. Akshay, M., Satish Chandra, B., Devi, K.R. and Hari, Y. 2022. Genetic variability studies for yield and its attributes, quality and nutritional traits in rice (*Oryza sativa* L.). The Pharma Innov. J., 11(5): 167-172.
- 4. Ali, A., Khan, A.S and Asad, M.A. 2002. Drought tolerance in wheat: genetic variation and heritability for growth and ion

advance as percentage of mean might be beneficial. Correlation analysis identified harvest index, biological yield per plant, number of filled grains per panicle, test weight, plant height, grain breadth and kernel breadth as the key contributors to yield. These traits can be used to select desirable genotypes for future breeding programs and as parents in rice hybridization programs. High-vielding rice genotypes included Bayakhuta (31.27g), Mutiya Dhan (31.02g), SGCARS 1025 (29.87g), Tikee Chudi (28.87g) and Kukda Mor (28.49g). These genotype have the potential for use in upcoming breeding programs.

Acknowledgements

The author is thankful to the Department of Genetics and Plant Breeding and Department of Agricultural Statistics of S. G. College of Agriculture and Research Station Kumhrawand, Jagdalpur, IGKV, Chhattisgarh.

- relations. Asian J. Plant Sci. Res., 1:420-422.
- Aristya, V. E., Trisyono, Y. A. and Mulyo,
 J. H. 2021. Morphological fingerprint of new rice genotypes. In IOP Conference Series: Earth and Environmental Science, 662(1): 012022. IOP Publishing.
- 6. Burton, G.W. and DeVane, E.H. 1953. Estimating heritability in tall fescue (*Festuca arundinacea*) from replicated clonal material. Agrono. J., 45:478-481.
- Devi, K.R., Venkanna, V., Hari, Y, Chandra, B.S., Lingaiah, N. and Prasad, K.R. 2020. Studies on genetic diversity and variability for yield and quality traits in promising germplasm lines in rice (Oryza sativa L.). The Pharma Innov. J., 9(1):391-399.

- 8. Iqbal, J., Shinwari, Z.K. and Rabbani, M.A. 2014. Investigation of total seed storage proteins of Pakistani and Japanese maize (*Zea mays* L.) through SDS-PAGE markers. Pakistan J. Bot., 46(3): 817-822.
- Jamal, I.J.K., Abdul, B., Khan, S. and Islam, Z. 2019. Genetic variation for yield and yield components in rice; Journal of Agril.Biol. Sci.., 4(6):1990-6145.
- Jebakani, K.S., Aishwarya, D., Prathima, J.L., Ramachander, S., Devsena, N., Wilson, D., Kumar, P.D. and Samudeshwari, R. 2023. Assessing the genetic diversity and association of traits among the rice (*Oryza sativa* L.) landraces and varieties from Tamil Nadu. Electronic J. Plant Breed., 14(3): 818 832.
- 11. Ketan R, Sarkar G. 2014. Studies on variability, heritability, genetic advance and path analysis in some indigenous Aman rice (*Oryza sativa* L.). J. Crop Weed, 10:308-315.
- 12. Khaire, A.R., Kunkerkar. R.L., Thorat, B.S., Gavai, M.P., Bhave, S.G. 2017. Studies on genetic variability for yield and yield contributing traits in local rice (*Oryza sativa* L.). J. Pharmacognosy Phytochem, 6(5):1376-1378
- Krishna L, Raju Ch. D and Raju Ch., S. 2008. Genetic variability and correlation in yield and grain quality characters of rice germ plasm. The Andhra Agric. J., 55:276-279.
- 14. Kunkerkar, R.L., Ingale, S.N., Thorat, B.S., Devmore, J.P. 2017. Studies on genetic variability for quantitative and qualitative traits in North-East Indian Rice (*Oryza sativa* L.); J. Rice Res., 10(2):18-22.
- 15. Manasa, S., Reddy, S. M., Murthy, K. G. K. and Meena, A. 2022. Studies on correlation and path coefficient analysis of yield and yield attributing characters in rice landraces

- (*Oryza sativa* L.). Int. J, Environ. Climate Change, 12(11): 442-451.
- Nirmaladevi, G., Padmavathi, G., Suneetha, K. and Babu, V.R. 2015. Genetic variability, heritability and correlation coefficients of grain quality characters in rice. SABRAO J. Breed. Genet., 47(4):424-433.
- 17. Nithya, N., Beena, R., Stephen, R., Abida, P.S., Jayalakshmi, V.G. and Viji, M.M. 2020. Genetic variability, heritability, correlation coefficient and path analysis of morph physiological and yield related traits of rice under drought stress. Chemi.Sci. Review Letters, 9(33):48-54.
- Panigrahi, A.K., Bharathi, M and Kumaravadivel, N. 2018. Genetic variability analysis and trait association for resistance gene pyramided F2 population in rice (*Oryza sativa* L.). Int. J. Pure Applied Bio-Sci., 6: 814-821.
- 19. Panwar, L.L. and Mathur, S.S. 2007. Variability studies in segregating populations of rice (*Oryza sativa* L.). Annals Agril. Res., 28(1). 146-152.
- Parte, D., Sathish, K., Sahu, P., Sharma, D., Bhainsa, K., Das, B.K. and Shrivastava, R. 2022. Correlation and path analysis studies for yield and quality traits of rice landraces and mutants of Chhattisgarh, India. Int. J. Environ. Climate Change, 12(12): 1771-1779.
- 21. Patel, H.R., Patel, V.P., Patel, P.B., Rathod, A.J and Pampaniya, A.G. 2018. Genetic variability, correlation and path analysis for grain yield and component traits in F3 segregating population of rice (Oryza sativa L). Int. J. Chemi. Studies, 6(2):2327-2331.
- 22. Pervaiz, Z.H., Rabbani, M.A., Khaliq, I., Pearce, S.R. and Malik. S.A. 2010. Genetic diversity associated with agronomic traits using microsatellite markers in Pakistani

Journal of Genetics, Genomics & Plant Breeding 7(3) 83-91 (July, 2024)

ISSN (Online): 2581-3293

- rice landraces. Electronic J. Biotec., 13(3): 4-5.
- 23. Rajpoot, P., Singh, P.K., Verma, O.P. and Tripathi, N. 2017. Studies on genetic variability and heritability for quantitative characters in rice (*Oryza sativa* L.) under sodic soil. J. Pharmacognosy Phytochem., 6(4):1162-1165.
- 24. Saha, S.R., Hassan, L., Haque, A., Islam, M.M. and Rasel, M. 2019. Genetic variability, heritability, correlation and path analysis of yield components in traditional rice (*Oryza sativa* L.) landraces. J. Bangladesh Agril. Univers., 17(1):26-32.
- 25. Seneega, T.V., Gnanamalar, R.P., Parmeswari, C., Vellaikumar, S. and Priyanka, A.R. 2019. Genetic variability and association studies in F₂ generation of rice (*Oryza sativa* L.). Electronic J. Plant Breed., 10(2): 512-517.
- Singh, R., Yadav, V., Mishra, D.N., Yadav, A. 2018. Correlation and path analysis studies in rice (*Oryza sativa* L.). J. Pharmacognosy Phytochem., 7(1):2084-2090.